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Abstract

Recent measurements in a region of continental slope characterized by ridges and valleys running
up and down the slope reveal interesting high mode structure in the tidal band velocity signals,
with enhanced mixing above the corrugations. In order to understand these observations we have
performed numerical simulations of the internal tide generation in this region of topography. Here
we focus on the response of the flow to along-slope barotropic tidal forcing. For small amplitude
barotropic forcing, internal waves are generated over the continental slope which propagate toward
the ocean surface, and toward shallower water. When higher amplitude forcing is combined with
large amplitude corrugations, the flow is locally supercritical downstream of ridges, and transient
internal hydraulic jumps result. As the flow relaxes each half tidal period, these jumps are released
as internal wave packets, which propagate up into the thermocline. The internal hydraulic jumps
are a source of mixing in the valleys, while the small-scale shears associated with the internal waves
could lead to mixing higher up the water column. Over the forcing range considered, the response
is dominated by slightly higher harmonics of the tidal forcing frequency than predicted by existing
analytic theories.

1 Introduction

The possibility that the tides act as an important source of energy for diapycnal mixing in the ocean,
of similar magnitude to the winds, has been revived by recent measurements of tidal dissipation
(Egbert and Ray, 2000) and spatially inhomogeneous diapycnal mixing (Ledwell et al, 2000). Baines
(1982) examined the problem of barotropic to baroclinic tidal energy conversion on continental
slopes, and concluded that only a small amount of energy would be converted, in part because
the dominant tidal flow is parallel to the coast for much of the ocean. Baines however neglected
the possibility of topographic variations in the along-slope direction. A region containing such
topography in the form of corrugations aligned up and down the slope is the Atlantic continental
slope off the South-East United States, where the recent Turbulence and Waves on Irregular Sloping
Topography (TWIST) field program was carried out (Nash et al, 2003). In a companion paper
(Legg, 2002) we examined the baroclinic response to the barotropic tide component normal to the
continental shelf break in a region such as the TWIST site, through a series of numerical simulations.
Here we focus on the response to the barotropic tide in the along-slope direction, i.e. parallel to
the shelf-break.

Principal features of this region are a concave slope, steepest near the shelfbreak, and less
steep further down the slope; a non-uniform stratification,with much stronger stratification near
the surface than at depth; and corrugations of small horizontal scale (≈ 3km) aligned up and down
the slope. Enhanced mixing was observed over the corrugations.

Previous studies of internal wave generation by flow over topography have identified two im-
portant controlling parameters. The first ε = |∇h|/s is a measure of the relative steepness of the
topography, where h is the topographic height, and s is the slope of an internal wave group velocity
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characteristic:

s =

(

ω2 − f 2

N2 − ω2

)1/2

(1)

ω is the internal wave frequency, f is the coriolis frequency, and N is the buoyancy frequency.
The second important parameter, RL = U0L/ω0, where L is the topographic wavenumber, is a

measure of the nonlinearity, expressed as a ratio between the tidal excursion distance U0/ω0 and
the wavelength of the topography λ = 2π/L, where U0 is the amplitude of the barotropic flow
forcing, and ω0 is the frequency of the forcing. This parameter can also be thought of as a Froude
number, being a measure of the ratio of the advection speed to the horizontal phase speed of the
fundamental frequency wave Cp = ω0/L. When RL > 1, fundamental frequency waves cannot
propagate upstream against the barotropic flow at peak amplitude.

Bell (1975a,b) considered the limit of ε << 1, with finite RL. He showed that for small RL,
the “acoustic limit”, the internal wave response is confined to the forcing frequency, while at large
RL (e.g. large U0 or small ω0), the quasi-steady lee-wave limit applies. For intermediate RL the
response consists of internal waves at the harmonic frequencies nω0, up to a maximum frequency
of N . For sinusoidal topography of the form h = h0sin(Ly), the vertical velocity amplitude of the
generated radiating wave of frequency nω0 is

wn =
nω0

π
h0Jn(LU0/ω0) (2)

where Jn is the Bessel’s function of order n. and the horizontal wavenumber of the wave is equal
to the topographic wavenumber L. The vertical wavenumber is determined from the dispersion
relation for each frequency component. Recent theoretical (Balmforth et al, 2002; St Laurent et al,
2003) and numerical studies (Khatiwala (2003), Li (2003)) have extended Bell’s theory to steeper
topography. For ε → 1 the internal wave response is characterized by smaller horizontal and vertical
scales, as internal wave energy radiates out from the topography in the form of a narrow beam. In
addition the numerical simulations of Khatiwala (2003) suggest that for steep sinusoidal topography
(ε > 1), the effective barotropic to baroclinic energy conversion is reduced, perhaps because the
fraction of energy radiated downward into the valleys is dissipated locally.

It should be noted that the theoretical extensions of Balmforth et al (2002) and St Laurent et al
(2003) were for the limit RL << 1, and so there are no theoretical predictions of the modifications
expected for large RL and large ε. Baines (1982) also studied the RL << 1 limit.

A second theoretical approach relevant to the TWIST scenario is that of Thorpe (1992, 1996),
who considered flow over corrugations in the quasi-steady limit (ω0 = 0), now on an infinite sloping
plane at an angle α to the horizontal. For corrugations of wavenumber L aligned up and down the
slope, the wavenumber of the internal waves generated by the flow is equal to L in the alongslope
direction, as for the flat-bottomed case. The wavenumber in the direction aligned with the slope
is zero (there is no phase difference up and down the slope), and combined with the dispersion
relation this gives a vertical wavenumber m and cross-slope wavenumber k

m = −
cosβcosαL

√

(sin2β − sin2α)
(3)
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k = −
cosβsinαL

√

(sin2β − sin2α)
(4)

(where negative values of k and m imply energy propagation toward the shelf-break and upward
respectively) where β = atan(s), the angle the wave group velocity makes with the horizontal. No
wave can be generated for α > β, i.e. for supercritical background slopes such that dh/dx > s.
In the quasi-steady limit, the relevant frequency on which s depends is the intrinsic frequency of
the flow U0L, but equations 3 and 4 would be expected to hold equally for waves of frequency nω0

generated by a flow oscillating at frequency ω0.
The TWIST site differs from the scenarios considered in these theoretical studies in several

important respects. Firstly, the background slope is not uniform, but changes from a subcritical
slope (α < β) with respect to the M2 tidal frequency on the lower reaches, to a supercritical slope
on the upper part of the slope. Secondly, the amplitude of corrugations, while small, may in places
be sufficient to give locally steep slopes in the direction parallel to the shelf-break, so that ε > 1 in
the direction of the flow. Thirdly, the forcing amplitude might be sufficiently large that RL > 1. In
this study we focus on the modifications to the baroclinic flow generated by tidal flow over sloping
corrugated topography when the background slope is concave, and corrugations and forcing are of
finite amplitude.

2 Model formulation and configuration

As described in Legg 2002, we use the nonhydrostatic MIT ocean model (Marshall et al, 1997),
with the coordinate system oriented with the continental slope: the x-direction is the cross-slope
direction, and the y-direction is the along-slope direction. The domain size is Lx × Ly × H =
254km× 10km× 2505m, and the resolution is nx×ny×nz = 328× 80× 60, and variable grids are
employed in the x and z directions, with minimum values of ∆z = 10m and ∆x = 370m, located in
the thermocline and over the slope respectively. The topography consists of the along-slope average
of the observed topographic height, with sinusoidal corrugations, of wavelength λ = 10/3km, and
amplitude h0 superimposed. The density field is initially horizontally uniform, with a vertical
stratification which is a power law best-fit to the observed density field. The vertical and horizontal
viscosities are Av = 3 × 10−2m2/s and Ah = 1m2/s respectively, the minimum values found to
prevent grid-scale noise, given the relatively coarse grids. The explicit background diffusivity is
set to zero, to avoid erosion of the background thermocline stratification in the absence of flow.
Implicit numerical diffusion is introduced where needed for stability by the tracer advection scheme
- a direct discretization method with flux limiting (Pietzrak, 1998).

At the topography, no-slip boundary conditions are imposed. A linear free-surface boundary con-
dition is applied at the ocean surface. At the coast and the offshore boundary stress-free boundary
conditions are imposed, while at the y = 0, Ly cross-slope boundaries, periodic boundary conditions
are applied. The tidal forcing is applied through a body force of the form

∂v

∂t
= U0ω0cos(ω0t) (5)
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Figure 1: (a) The topography used in the model. The mean slope is an alongslope average of the
actual topography of the Twist region. Sinusoidal along-slope variations are superimposed on this
mean slope, with a wavelength of 10/3km. (b) The stratification N 2 = −(g/ρ0)dρ/dz, as a function
of depth, from the observations (solid line) and a monotonic bestfit powerlaw profile of the form
N2 = 1.1007(−z)−1.9564 for z < −80m, and N 2 = 1.1007 × 80−1.9564 for z > −80m.
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Simulation U0 h0 RL = U0L/ω0 εy = 2πh0/(λs) topography stratification

U2h100 2 cm/s 100m 0.27 1.2 concave nonuniform
U2h300 2 cm/s 300m 0.27 3.7 concave nonuniform
U10h100 10 cm/s 100m 1.34 1.2 concave nonuniform
U10h300 10 cm/s 300m 1.34 3.7 concave nonuniform
UniformN 2 cm/s 100m 0.27 2.9 concave uniform
UniformS 2 cm/s 100m 0.27 2.9 linear uniform

Table 1: Parameters for different runs.

where v is the along-slope velocity. The boundary conditions at the coast and offshore boundary
have little influence on the solutions, since the waves generated on the slope do not reach either
boundary during the time of integration. The forcing frequency ω0 is set to the M2 tidal frequency
of ω0 = 1.41 × 10−4s−1. No-flux boundary conditions are applied to the active tracer, and a linear
equation of state is employed.

We describe a series of different runs characterized by different forcing amplitude U0 and different
corrugation amplitude h0, listed in Table 1. These two parameters can equivalently be described
by the nondimensional parameters RL = U0L/ω0, a measure of nonlinearity and εy = 2πh0/(λs),
a measure of the maximum corrugation steepness relative to the wave steepness (where we use s
appropriate to the fundamental frequency ω0). Most of the calculations have the concave slope
and nonlinear stratification of the observation region. In addition, to evaluate the role of the
concave slope and nonuniform stratification, we include two other calculations, one with uniform
stratification and concave slope, the other with uniform stratification and uniform slope. This latter
calculation, henceforth identified as UniformS, comes closest to the conditions in the theoretical
model of Thorpe (1992). Note that all calculations have εy > 1, so that the corrugations are locally
steep, and RL > 1 for the calculations with U0 = 0.1, so that the peak barotropic current speed is
greater than the horizontal phase speed of the fundamental frequency wave.

3 Results

3.1 Reference calculation

We first describe in detail our “reference calculation”, which has concave slope, nonuniform strati-
fication and forcing amplitude U0 = 2cm/s and corrugation amplitude h0 = 100m. Henceforth we
will refer to this calculation as U2h100.

Snapshots of the vertical velocity field at a time t = 3.23T (where T is the M2 tidal period)
after the onset of the calculation reveal the character of the wave field. The lengthscale in the
alongslope direction is equal to that of the corrugations. In the cross-slope direction, velocities are
in phase in a direction roughly aligned with the slope, all in agreement with predictions of linear
theory (Thorpe, 1992).

Figure 3 shows, for a wave generated over the corrugations at a depth of h = 2370m, the
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Figure 2: Instantaneous vertical velocity fields at a time t = 3.23T for the reference calculation
U2h100 with U0 = 2cm/s and h0 = 100m (a) in the (x,z) plane at a location on the flanks of a
ridge (y=2.5km) (b) in the (y,z) plane at x=58.7km. Contour spacing = 5 × 10−4m/s. In this and
all subsequent plots, dashed contours represent negative values (i.e. downward vertical velocities).
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Figure 3: The projection of the internal wave characteristics onto the (x,z) plane, for internal waves
at frequencies ω0, 2ω0 and 3ω0, generated at location of depth h = 2370m on a concave slope, by
alongslope flow over corrugations of wavelength λ = 10/3km, for nonuniform stratification as in
figure 1b.
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Figure 4: The power spectrum of the vertical velocity P = ŵ(ω)ŵ∗(ω),
where ŵ(ω) =

∫

∞

−∞
w(t)exp(iωt)dt, the Fourier transform of the vertical veloc-

ity timeseries. The power spectrum is given for 3 different locations: (x, z) =
(58.74km,−1.0km), (58.74km,−1.8km), (30.93km,−1.0km), where the first (dashed) is far
from the slope, and the second (dotted) and third (solid) are just above shallow and steep slope
respectively. The spectra are averaged over all points in the alongslope (y) direction.

projection of the wave characteristics onto the (x,z) plane, for waves of frequency ω0, 2ω0 and 3ω0.
The initial wavenumbers are given from equations 3 and 4, assuming the local stratification and
slope appropriate to that depth. (The variation of the background slope on the concave slope is
ignored in estimating these wavenumbers). At each reflection from the top surface, the horizontal
wave numbers are unchanged in magnitude and direction, while the vertical wavenumber changes
sign. Subsequent reflections from the slope tend to increase the magnitude of the wavenumbers in
the vertical and cross-slope direction, while the wavenumber in the along isobath direction remains
constant (Thorpe, 1996). With variable stratification, the vertical wavenumber is increased as
stratification increases, so that the slope of the characteristic k/m flattens. All waves propagate
toward shallower water initially (Thorpe, 1996), but the waves at frequencies ω0 and 2ω0 encounter
supercritical slope and are reflected offshore, while the 3ω0 wave continues onshore. Note that
higher frequencies lead to many more reflections in traveling a fixed horizontal distance toward the
shelfbreak.

Vertical velocity power spectra are shown in figure 4 for three different locations. Close to the
topography ((58.74km,-1.8km) and (30.93km,-1.0km)), the largest spectral peak is at a frequency of
ω0, even for the steep slope (30.93km, -1.0km) where disturbances at this frequency are evanescent.
However, away from the topography (e.g. at (x, z) = (58.74km,−1.0km)) the peak at 2ω0 is
greatest.
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Figure 5: Vertical velocity power spectrum predicted from equation 2, normalized by w2(ω0) for (a)
U0 = 2cm/s and (b) U0 = 10cm/s.

For comparison, the spectral shape predicted by Bell (from eqn 2) is shown in figure 5. For a
forcing velocity of U0 = 2cm/s, Bell predicts the largest spectral peak at ω0. Note however this
prediction is made for a zero background slope.

The vertical velocity is plotted as a function of time and distance in figure 6. Overlain on these
plots are lines of constant phase calculated from the phase velocity Cp = (Cx, Cy, Cz) where

(Cx, Cy, Cz) =
(

ω

k
,
ω

l
− U,

ω

m

)

(6)

and K = (k, l, m) is the wavenumber. From Thorpe (1992) we use l = L, where L is the topographic
wavenumber. k is determined from equation 4 where α is the local slope angle, and the stratification
at the slope is used. l and k do not change with depth, but m, the vertical wavenumber does change
due to the change in stratification according to

(k2 + l2)1/2

m
=

(

ω2 − f 2

N2 − ω2

)1/2

(7)

so that

Cz =
ω

(k2 + L2)1/2

(

ω2 − f 2

N2 − ω2

)1/2

(8)

For each plot we use values of ω = ω0, 2ω0, 3ω0, except at locations where the slope is supercritical
with respect to the fundamental frequency, when only the higher frequencies are shown. In estimat-
ing the along-slope phase speed in a stationary frame of reference, Cy, (figure 6b) the flow speed
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Figure 6: Vertical velocity in U2h100 as a function of time and (a) x, at y = 3.37km, and z =
−1.00km, (b) y, at x = 58.7km and z = −1.00km (c) z, at x = 58.7km and y = 3.37km and (d)
z at x = 29.08km and y = 3.37km. Contour spacings are (a) 2.5 × 10−4m/s, (b) 2 × 10−4m/s, (c)
5× 10−4m/s, (d) 5× 10−4m/s. Overlain on the plots are the lines of constant phase for frequencies
ω0, 2ω0 and 3ω0. In (a) and (d) only the two higher harmonic frequencies are shown since the slope
is supercritical to the fundamental at this location. The higher the frequency, the faster the phase
velocity.
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U must be removed. For convenience we use U = U0, the peak barotropic flow velocity (giving a
lower limit of the actual phase speed in the stationary frame) although in actual fact the flow is
oscillating.

In figure 6a vertical velocity is shown as a function of x and time, on a plane located at a depth
of z = −1.0km, and y = 3.37km (situated over a ridge). No values are shown for x < 30.6km
since this plane intersects the topography at this location. The lines of constant phase have been
calculated using the value of slope and stratification where the plane intersects the topography.
At this location, the slope is supercritical with respect to the fundamental frequency ω0, but not
with respect to 2ω0 and 3ω0, for which the theoretical constant phase lines are drawn. We see that
close to the topography, the velocity field does appear to correlate with the 2ω0 theoretical constant
phase line appropriate to this slope. Phase propagation is toward the slope, as predicted by Thorpe
(1992). Further away from the slope, the numerical results indicate faster phase velocities, which
are expected if the waves here were generated over less steep slope (hence smaller k).

In figure 6b the vertical velocity is shown as a function of y and time, again at z = −1.0 and now
at x = 58.7km. Since Cy depends only on the frequency and the wavenumber of the topography,
and the background flow speed, no choices about stratification or slope have to be made in this case
in plotting the theoretical lines of constant phase. The broader features of the numerical velocity
pattern appear to follow the 2ω0 constant phase line most closely. Here phase propagation occurs
alternately in each direction, corresponding to waves with wavenumber ±L, as expected from an
oscillating forcing flow. For this value of RL = 0.26, the background flow has only a small influence
on the lines of constant phase.

The two final panels of figure 6 show the vertical velocity as a function of z and time, for
two locations on the ridge at y = 3.37km, with x = 58.7km and x = 29.08km respectively. At
the second location, the slope is supercritical with respect to the fundamental frequency so the
theoretical lines of constant phase are shown only for ω = 2ω0, 3ω0. The lines of constant phase are
calculated from equation 8 for waves generated at the slope at this location, with the stratification
given at the slope. At both locations the numerical velocity patterns are aligned closely with the
lines of constant phase with frequency 2ω0. Phase propagation is downward, indicating upward
energy propagation, as expected for waves generated at the bottom boundary.

Since the theoretical lines of constant phase align closely with the patterns of vertical velocity
close to the slopes, we therefore see that close to the concave topography, the vertical and horizontal
wavelengths are given by the values predicted for waves generated locally at the slope. Further away
from the slope (e.g. for large x in figure 6a) the source of the wave is less clear, but the horizontal
wavelength λx increases as the bottom slope reduces, as expected.

An interesting feature is the generation of waves at the higher harmonic frequencies in locations
where the slope is supercritical to the fundamental frequency. (It should be noted that the slope
is also supercritical to the maximum intrinsic frequency of the flow U0L.) Hence tides can still
generate a wave response when flowing over steep slopes, if higher harmonics are included. From
figure 6a it can be seen that right at the steep slope the vertical velocity signal has frequency equal
to ω0, but presumably since ω0 waves cannot propagate away from the slope, a short distance away
from the slope the signal has the higher frequency 2ω0.
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Figure 7: The projection of the internal wave characteristics onto the (x,z) plane, for an internal wave
at frequency 2ω0, (where ω0 is the M2 tidal frequency) generated at a location of depth h = 2370m,
by alongslope flow over corrugations of wavelength λ = 10/3km. (a) uniform stratification, concave
slope UniformN, (b) uniform stratification, linear slope UniformS.

3.2 Influence of concave slope and nonuniform stratification

We now compare the results from the reference calculation U2h100 with two calculations with the
same amplitude topography and barotropic forcing; the first UniformN has the same concave slope
as U2h100 but the nonuniform stratification is replaced with stratification with a constant value
of N = 6.19 × 10−4s−1; the second UniformS also has uniform stratification and in addition the
concave slope is replaced with a uniform slope between the shelfbreak and the base of the slope.

Figure 7 shows the projection of the 2ω0 wave onto the (x,z) plane, for a wave generated at a
depth of 2370m, for UniformN and UniformS. This particular frequency is chosen since it seems
to dominate the spectra far from the bottom topography (figure 2). The choice of constant strat-
ification value has been made so that the wave undergoes a similar number of reflection from the
slope as it moves toward the shelf as in the case with variable stratification. The concave slope is
supercritical to this frequency over a small region near the top (although this particular character-
istic does not encounter that portion of slope, and hence wave energy can reach the shelf) while the
uniform slope is subcritical throughout.

Figures 8 and 9 show snapshots of the vertical velocity for UniformN and UniformS respectively.
Compared to figure 2 the most significant feature is that the fields become quite disorganized with
time. At earlier times, the velocity patterns in figures 8a and 9a are aligned with the background
slope, as expected, but at later times there is little organized pattern. Similar behavior is seen
in the (y,z) plane cross-sections. Changing the stratification from a variable profile to a constant
value has much more impact on the character of the flow than changing the slope from concave to
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Figure 8: Instantaneous vertical velocity fields for the calculation with uniform stratification N =
6.2 × 10−4 and concave slope, UniformN. (a) at t = 0.67T in the (x,z) plane at a location on the
flanks of a ridge (y=2.5km) (b) at t = 0.67T in the (y,z) plane at x=58.7km. (c) at t = 3.23T in
the (x,z) plane at a location on the flanks of a ridge (y=2.5km) (d) at t = 3.23T in the (y,z) plane
at x=58.7km. Contour spacing = 2 × 10−4m/s
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Figure 9: Instantaneous vertical velocity fields for the calculation with uniform stratification N =
6.2 × 10−4 and uniform slope, UniformS. (a) at t = 0.67T in the (x,z) plane at a location on the
flanks of a ridge (y=2.5km) (b) at t = 0.67T in the (y,z) plane at x=58.7km. (c) at t = 3.23T in
the (x,z) plane at a location on the flanks of a ridge (y=2.5km) (d) at t = 3.23T in the (y,z) plane
at x=58.7km. Contour spacing = 2 × 10−4m/s
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Figure 10: The power spectrum of the vertical velocity P = ŵ(ω)ŵ∗(ω), where ŵ(ω) =
∫

∞

−∞
w(t)exp(iωt)dt, the Fourier transform of the vertical velocity timeseries. The power spec-

trum is given for 3 different calculations: U2h100 (solid), UniformN (dot-dash) and UniformS

(dashed), at a location (x, z) = (58.74km,−1.0km), for the two cases with concave slope and
(x, z) = (72.83km,−1.0km) for the case with uniform slope. In all three, the total water depth at
this location (averaged in the alongslope direction) is 2km, so that the spectrum is taken far above
the slope. The spectra are averaged over all points in the alongslope (y) direction.

uniform.
Figure 10 shows the vertical velocity power spectra at a height 1km above the slope, where the

total depth is 2km, for all three calculations U2h100, UniformN, UniformS. The spectra are divided
through by N(z)2/f 2

0
, to facilitate comparison between the calculations of different stratification,

where vertical velocity in internal waves is expected to be smaller as stratification is increased,
due to the greater energy required to deform the isopycnals. Even with this scaling, the vertical
velocity magnitudes in the calculations with constant stratification are smaller than the uniform
stratification case. The principal peaks are again at 2ω0, but there is relatively more energy at
higher harmonics. Note that N/ω0 = 10.7 for the constant stratification, while for the nonuniform
stratification, the maximum possible frequency generated on the slope at x = 58.7km is 4ω0, given
the stratification at the height of the topography.

We now examine the time-distance plots of vertical velocity for UniformS, shown in figure 11.
Those for UniformN are similar in most respects to those of UniformS and are therefore not shown.
In figure 11c and near the slope in 11d, the vertical velocity patterns are closely aligned with lines
of constant phase for frequency of 2ω0, but in figure 11a ω0 constant phase lines match the slope
of velocity patterns better. Note that compared to figure 6a, the numerically calculated vertical
velocity patterns in figure 11a do not curve as the slope is approached - this is a result of the
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Figure 11: As for figure 6 but for UniformS. (a) at y = 3.37km, and z = −1.00km, (b) at x = 72.8km
and z = −1.00km (c) at x = 72.8km and y = 3.37km and (d) at x = 41.7km and y = 3.37km.
The locations in x have been chosen so that the waterdepth is the same as in the plots in figure 6.
Contour spacing is 2 × 10−4m/s. Lines of constant phase for the waves of frequency ω0, 2ω0 and
3ω0 are superimposed, with higher frequencies having faster phase velocities.
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Figure 12: The power spectra of the vertical velocity P = ŵ(ω)ŵ∗(ω), for 4 different combinations
of U0 and h0, at the location (x, z) = (58.74km,−1.0km), far from the slope, and averaged over all
points in the alongslope (y) direction.

constant slope (in UniformN these patterns do curve toward the wall, indicating the slower phase
speeds of waves generated on steeper slopes). At higher levels in figure 11c and figure 11d and in
figure 11b there does not appear to be phase propagation, but rather standing mode behavior in
both the along-slope (y) and vertical (z) directions. This is established once the waves reflect from
the upper surface. Reflections from the upper surface occur much sooner in the uniformly stratified
cases than for the nonuniform stratification due to the faster group velocity in the near surface
layers when the thermocline enhancement of stratification is absent.

3.3 Influence of flow amplitude and corrugation height

We now examine how increasing the flow amplitude (thereby increasing RL) and increasing the
corrugation amplitude (thereby increasing the relative steepness εy) influence the qualitative features
of the flow field. The 4 different calculations are the reference case already described, with U0 =
2cm/s, h0 = 100m (U2h100); U2h300, with U0 = 2cm/s, h0 = 300m; U10h100, with U0 = 10cm/s,
h0 = 100m; and U10h300 with U0 = 10cm/s, h0 = 300m.

The vertical velocity power spectra from all 4 calculations at a location far above the slope are
shown in figure 12. At this location the reference calculation has spectral peaks at frequencies of
ω0 and 2ω0. Increasing the topographic amplitude changes the spectrum little. This contrasts with
the theoretical predictions from Bell (1975a) (equation 2), which would suggest that the spectral
amplitude increases like h2

0
. More significant changes appear when the flow amplitude is increased:

U10h100 has the largest peak at 3ω0, with significant peaks up to 6ω0. Increasing the topography
amplitude at this high flow-speed increases the amount of energy in higher harmonics, and the
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Figure 13: Instantaneous vertical velocity fields at a time t = 3.2T for U2h300 U0 = 2cm/s and
h0 = 300m in the (y,z) plane at x=58.7km. Contour spacing = 5 × 10−4m/s

largest spectral peak for U10h300 is at 4ω0 (although that at 3ω0 is only slightly smaller). The
amplitudes of the spectra have all been scaled by U 2

0
. The theoretical spectrum predicted from Bell

(1975a) (eqn 2) is shown in figure 5b for U0 = 10cm/s. Even at this flow speed, Bell predicts most
of the energy will be contained at frequency ω0, with smaller contributions from 2ω0 and 3ω0. In
fact Bell predicts a spectral peak at 3ω0 only for U0 > 24cm/s.

A snapshot of the vertical velocity field in the (y,z) plane for U2h300 at the same time and
location as in figure 2b is shown in figure 13. The amplitude of topography has been increased
from h0 = 100m to h0 = 300m (while keeping U0 fixed). The principal qualitative difference is a
tendency for disturbances to be narrower near the top of the ridge (as noted in previous calculations
with steep topography, e.g. Khatiwala (2003) and predicted by Balmforth et al (2002)).

The analogous snapshot for U10h100, an increase in U0 from 2cm/s to 10cm/s while holding h0

fixed at 100m, is shown in figure 14. The pattern is again broader, as in figure 2 but now tilted
over, as a consequence of the different slope of the characteristics for higher frequencies.

The snapshots in the (x,z) plane show qualitatively similar features as in figure 2a, and hence
are not shown.

When both U0 and h0 are increased, as in U10h300, qualitatively new features appear near the
ridges, as seen in figure 15a. This snapshot is taken when the barotropic velocity is at its peak.
Large downwelling is seen over the ridges, with similarly large rebound upwelling just downstream.
We see that this is associated with a plunging down of isopycnals (figure 15c), followed by a rebound
which looks qualitatively like an internal hydraulic jump. The horizontal velocity field (with the
barotropic forcing of 10cm/s subtracted) shows that the flow is accelerated in a thin layer over the
ridge, and then reverses direction in the hydraulic jump.

The horizontal velocity field also shows that although the vertical velocity amplitude becomes
small as the waves propagate up into the more strongly stratified upper region, the horizontal
velocity still contains significant energy. The strongest shears are therefore found in the thermocline.
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Figure 14: Instantaneous vertical velocity fields at a time t = 3.2T for U10h300, U0 = 10cm/s and
h0 = 100m in the (y,z) plane at x=58.7km. Contour spacing = 5 × 10−3m/s

It is difficult to determine rigorously whether the isopycnal perturbations seen downstream of
the ridges are hydraulic jumps. The flow would be hydraulically controlled at the top of the ridge if
there is a transition from subcritical flow to supercritical flow. For steady, uniformly stratified flow
Long (1953) determines the critical topographic height at which transitions will occur in terms of
the mode number NH/U , where H is the total depth. However, our scenario is one of oscillating
flow with non-uniform stratification. The initial perturbations to the isopycnals and the flow are
confined to near the bottom topography because of the stratification, so it is unlikely that the
total depth influences the formation of these jump-like features. Instead we make a local diagnosis:
supercritical flow occurs when the horizontal flow speed exceeds the phase velocity of the internal
wave, thereby preventing phase propagation in the horizontal direction. The phase velocity of waves
in the alongslope direction is Cy = ω/L. For L = 2π/λ and ω = nω0, this gives Cy = n× 7.47cm/s.
The maximum velocity in figure 15b is 16.9cm/s. Even away from the ridges the peak flow is
supercritical to waves of frequency ω0 (since RL > 1), but locally over the ridge the peak flow
is also supercritical to waves at frequency 2ω0. At the height of the ridge in this location, the
stratification is N = 6.99 × 10−4s−1, so that waves with frequency up to 4ω0 are possible, and are
indeed found higher up the water-column (figure 12), so the accelerated flow over the ridge is not
supercritical to all possible internal waves at the topographic wavelength. The flow is supercritical
however to the frequencies at which Bell predicts most of the internal wave energy. Another way
to consider the effect of the topography on the flow is to note that for RL > 1, the flow must
take fluid up and over the ridge. Whether or not the ridge impedes the flow depends on energetic
considerations - kinetic energy from the flow must be used to increase the potential energy by lifting
up the fluid against the stratification - which can be expressed as a local Froude number criterion:
If U0/h0N = Fr < 1 where h0 is the ridge height, then the flow is impeded by the ridge. For
U0 = 0.1m/s, and N = 7 × 10−4s−1 this gives a critical ridge height of h0 = 142m to impede the
flow. So we expect U10h300, where h0 = 300m to impede the flow, whereas U10h100 does not have
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Figure 15: Instantaneous fields in the (y,z) plane at x=58.7km at a time t = 3.2T for U10h300,
U0 = 10cm/s and h0 = 300m: (a) vertical velocity, contour spacing 5 × 10−3m/s, (b) alongslope
velocity - 10 cm/s, contour spacing 10−2m/s, (c) buoyancy in the lower half of the domain, contour
spacing 3.9 × 10−5m/s2.
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sufficiently high ridges to block the flow. When U0 = 0.02m/s RL < 1, so that flow is not forced up
over the ridge. Hence a criterion for the possibility of hydraulic control might be RL > 1 combined
with h0 > U0/N .

Time-depth plots of vertical velocity show little qualitative dependence on topographic height,
and are largely influenced by the flow speed: time-depth plots for U2h300 are very similar to those
of U2h100 and are therefore not shown. Figure 16 shows the time-depth plots for U10h300, with
lines of constant phase overlain. In all plots, the vertical velocity patterns are mostly closely aligned
with the 3ω0 line of constant phase, although close to the wall in figure 16a the 4ω0 line of constant
phase might be closer. U10h100 is similarly dominated by patterns aligned with 3ω0 lines of constant
phase, and therefore not shown. Note that in the figure 16b the phase velocity in the stationary
frame of reference is given by nω0/L−U , where U is the advection speed, and we have used U = U0.
Whereas the inclusion of this advection correction made little difference for U0 = 0.02, for U0 = 0.1,
n = 1 waves can no longer propagate in the alongslope direction, and the propagation speeds of the
n = 2 and n = 3 waves are reduced significantly.

3.4 Mixing

These simulations do not reach a steady state, so it is difficult to say much about the transfer of
energy between barotropic and baroclinic flow, or about the fraction of that energy which is dis-
sipated versus that which is used for mixing. Within the short time-frame of the simulations, the
net changes in tidally averaged stratification are small compared to the perturbations in stratifica-
tion induced by the waves. The largest changes in stratification are found near the surface where
stratification is reduced right adjacent to the surface, and increased just below, perhaps indicating
mixing when the reflection of waves from the surface occurs. However, the signal to noise ratio is
small (given the large amplitude of wave temperature perturbations in the strongly stratified near
surface layer), so this is not a robust result. Another region of stratification changes is at depth
(figure 17). Stratification is eroded within the valleys, and enhanced above the ridges. In U10h300

the erosion of stratification might be associated with the hydraulic jumps, but again, the signal to
noise ratio is small.

4 Discussion and conclusions

We have described a series of calculations of the internal waves generated by barotropic tide flow
along a corrugated slope, examining the influence of the shape of the background slope, the strati-
fication profile, and the amplitude of the barotropic flow and corrugations. In all the calculations
with moderate forcing amplitude we find a response with a frequency twice that of the forcing (as
indicated by spectra and phase propagation), whereas theoretical predictions are for a response at
the forcing frequency. The upper part of the concave slope is supercritical to waves of the forcing
frequency, but subcritical to waves of 2ω0 over all but the steepest section. We find that as a result
of the largely subcritical slope, the nonlinear stratification has a far greater influence on the re-
sponse than the shape of the slope (concave versus linear). For uniform stratification a quasi-modal
pattern is established away from the bottom topography, with no phase propagation in the vertical
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Figure 16: As for figure 6 but for U10h300. Contour spacing is 5×10−3m/s. Lines of constant phase
are shown for waves of frequencies ω0, 2ω0, 3ω0, and 4ω0. In (a) and (d) the slope is supercritical
to the fundamental frequency, so only the higher harmonics are shown.
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Figure 17: The change in stratification ∆N 2 over the length of the calculation, for the two cases
U2h100 and U10h300. This stratification change is the difference between the stratification of
the initial state, and the stratification averaged over the final tidal cycle. Contour spacing: (a)
2 × 10−8s−2, (b) 6 × 10−8s−2.

nor in the along-slope direction. By contrast the nonuniform stratification cases all have down-
ward phase propagation (upward energy propagation), indicating an absence of downward reflected
waves. The timescale for waves to propagate and reflect from the top surface is considerably longer
in the nonuniform stratification cases than for the uniform stratification, and perhaps after several
reflections similar modal behavior might appear in the non-uniformly stratified runs too. Alterna-
tively there might be dissipation of the waves in the thermocline (hinted at by possible decreases
in stratification near the surface). Longer simulations would be necessary to clarify the behavior at
steady-state.

When the flow speed is increased, more harmonics are seen in the response. The relative am-
plitude of the higher harmonics is greater than predicted from linear theory. In particular, when
large flow speed is combined with large amplitude corrugations, structures which may be internal
hydraulic jumps are observed downstream of the ridges. On relaxation of the flow, these propa-
gate upward and in the along slope direction as internal wave packets with many higher frequency
components appearing. These are probably a deep water equivalent of the solitary wave packets
observed propagating onto the shelf every tidal cycle (MacKinnon and Greg, 2002).

The corrugation amplitude affects the energy levels relatively little, compared with estimates
from linear theory (Bell, 1975a,b). This would support results from Li (2003) and Khatiwala (2003),
indicating a saturation in internal wave energy levels for sinusoidal steep topography (recalling that
even our “low amplitude” corrugations have steepness εy > 1).

These simulations suggest two possible mechanisms for mixing by the flow of barotropic tide
over a corrugated slope. First, in the valleys of the corrugations, mixing may occur due to internal
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hydraulic jumps. This occurs only for large amplitude corrugations and large amplitude forcing,
with the criterion that the accelerated flow speed over the topography exceeds the phase speed of
the dominant harmonic generated at the topography for hydraulic control to occur, i.e.

U∗ >
nω0

L
(9)

where U∗ is the enhanced flow over the ridge (which will increase as h0 and U0 are increased), and L is
the corrugation wavenumber. Since n, the preferred harmonic, increases as U0L/ω0 increases, we can
equivalently state that U ∗/U0 must be large for hydraulic control to occur. In addition, a necessary
condition for hydraulic control is that the flow is impeded by the ridge, so that U0/(h0N) = Fr < 1,
combined with RL > 1. Note that Fr can be expressed as a combination of the nondimensional
parameters RL and εy:

Fr =
RL

εy

ω

Ns
(10)

So small Fr combined with large RL implies large εy, i.e. steep slopes. We would expect hydraulic
control to be a possible mechanism for mixing whenever large amplitude flow is accelerated over
large topographic perturbations. Note that such scenarios are excluded from Bell’s theory by the
assumption of small amplitude topography.

Secondly, a possible dissipation of wave energy in the thermocline for nonlinear stratification
hints at possible mixing in the thermocline. Note that although vertical velocities are small in
the thermocline, horizontal velocities are large, and shear instability could result. However in
these simulations, shear instability was not directly observed in the thermocline, at least over the
relatively short timescale of the simulations, and energy was probably dissipated by model viscosity
and implicit numerical diffusivity.

In comparison with the observations, we have principally identified responses at frequencies
which the observations did not sample. Observations identified mixing above the corrugations. The
observed flow speeds and corrugation amplitudes are closest to those of U2h100 however, where little
reduction in stratification is seen. We have to conclude therefore that the alongslope barotropic
forcing is not likely to be responsible for the observed mixing in the TWIST region. However,
internal hydraulic jumps associated with along-slope barotropic tidal flow over ridges have been
observed in other regions (e.g. Nash and Moum, 2001) and it is likely these results are applicable
elsewhere.

These simulations have shown a response which is at higher frequencies than predicted from
existing theory. A possible explanation for this higher frequency response might be that finite ac-
celeration of the flow occurs over the ridges, not included in Bell’s theory, so that the actual effective
forcing velocity is increased. This is an avenue for future research, and suggests that observations
of tidally generated baroclinic motion need to examine higher frequency flow components. Finally
it should be noted that in our previous paper (Legg, 2003) describing the baroclinic response to
cross-shelf forcing, the response was entirely at the fundamental frequency. This difference stems
from the very different length scales of the slope/shelf break topography (O(50km)) compared to
the corrugations (3.3km).
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